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Abstract 

A new polytype structure of 66R SiC (R3m, a = 
3.078, c = 166.188 A) was determined by the use of 
the method of modulated structure analysis described 
in part I [Yamamoto (1981). Acta Cryst. A37, 
838-842]. The R factor smoothly converged from 0.68 
for an initial state to 0.031 for a final result after 26 
cycles and the stacking sequence described by the 
Zhdanov symbol [23233333] 3 was obtained. To con- 
firm that the final result is independent of initial 
parameter selection, the least-squares program was 
initiated from another starting point and different final 
parameters describing the same stacking sequence were 
obtained. Therefore, this method can be used for SiC 
polytype analysis without special consideration for 
initial parameters. 

Introduction 

In the first part of this series [Yamamoto, 1981; 
referred to as (I) in the following], the theoretical basis 
of the method used here was given and analyses based 
on this theory were applied to the known structures of 
21H SiC and 66R ZnS polytypes. In this paper, we 
describe the application of this method to the 
determination of the stacking sequence of a 66R SiC 
crystal which has the rhombohedral space group R3m. 

Theory 

The determination of SiC polytypes is similar to that of 
ZnS polytypes because these two materials have similar 
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structures: the stacking sequence to be determined in 
both cases is that of tetrahedra which consist of SiC 4 or 
ZnS 4 and share their corners. In this respect, the 
determination of a 66R SiC polytype is completely 
analogous to that of 66R ZnS which was mentioned in 
(I). In this section, the theory is briefly reviewed. 

In the refinement of polytype structures of SiC, we 
can conveniently use the periodic intensity distribution 
function S(hl,h2,ha,h4) instead of the usual structure 
factor F(h~,h2,h3,h4) (Tokonami, 1966; Takeda, 
1967). This is defined in the present notation by 

F(hl,hE,h3,h4) 
S(h~,hE,h3,h 4) = M, (1) 

Fo(hl,hE,h3,h4) 

where M is the number of SiC layers in the unit cell (M 
= 66 in the present case), hl,h2,h3,h 4 are integers which 
designate reflections by the relation h--  h~a* + hEb* + 
(h a + h4/M)c* and Fo(hl,hE,h3,h4) is the structure 
factor of the structure consisting of one SiC layer with 
the period M. S(ht,h2,ha,h4) corresponds to the 
structure factor for the point atom with one electron 
located at the center of each SiC 4 tetrahedron. This is 
calculated from 

M 

S(h~,hE,h3,h 4) = ~ ~ P"(x~) 
Jz v=l 

j= l  

where the summation with respect to/~ runs over the A, 
A B, C sites; x~, xz, x~ (~ = A) are the usual 

three-dimensional coordinates of the A site in the 
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hexagonal unit cell: 0,0,0; x~, x~, x~ are those of the B 
s i te : l  i . x c , x  c g,--~,0, 2, xC are those of the C site: -~,g,0,1 ~ . 
and x~ = (x~ + v)/M (iu = A, B, C). [Note that, in the 
present method, we take c = 2 .518/k  which corres- 
ponds to the distance of one SiC layer (see I).1 P " ( x 2 )  
represents the occupation probability of the g (A, B or 
C) site at the vth (1 < v < M) layer perpendicular to the 
hexagonal c axis. 

From the definition, P"(x~)  is the periodic function 
of x2 with the period equal to one. Therefore, this can 
be expressed in terms of the Fourier series: 

P'~(x~) = ½Z [P~ exp (27rinx~) + P~-n 
n 

× exp (-2~rinx'g)], (3) 

where P~ is the complex amplitude of the nth-order 
harmonics and P"_, is its complex conjugate. In the 
method developed in (I), the sum of the squared 
weighted R factor R2 w = Y w ( I S  o I - IS c I)2/~ I So 12 and 
the squared penalty function PF 2 = } [ r ( x D l Z / 3 M  
[where r (xg)  has a value 21P"(xl ')l  for P " ( x ~ )  < 0, 
21P"(x2) - 11 for P"(x2 )  > 1 and zero otherwisel are 
minimized, treating P~" as variable parameters, by the 
least-squares method. In the case of the rhombohedral 
space group R3m, the following relations are derived 
from symmetry:  

PA(x~) = P~(x'~ - - 9  = pC(x'~ + ~). (4) 

This leads to 

pA = p ]  exp ( -2rc in /3 )=  pc  exp (2zrin/3) (5) 

and, in particular, P~ = Pg = Po e. Therefore, only pA 
(n = 0, 1 . . . .  ) are independent. In addition, from the 
physical requirement of the SiC structure, the sum of 
the occupation probabilities of the A, B and C sites 
must be equal to one in each layer: PA(X~) + PS(X'~) + 
pC(x~) = 1 for any x4 A. This gives pA = ~ and 

PAn[1 + exp (2rein~3) + exp (--27dn/3)] = 0 (n >_ 1). 

(6) 
In particular, P~m = 0 (m = 1,2 . . . .  ). 

In the present notation, the extinction rules of 66R 
SiC are -hx  + h 2 + h 4 4= 0 (mod 3) for general 
reflections h~h2h3h 4 and when -h~ + h 2 4= 0 (mod 3), 
h 4 4: 0. The first rule is derived from (2), (3), (5) and the 
second is explained by (2), (3) and (6). Therefore, the 
first rule is the extinction rule intrinsic to the space- 
group symmetry,  while the second is due to the 
requirement that an atom occupies any one of the A, B, 
C sites in a layer perpendicular to the hexagonal e axis. 

molten silicon (Inoue, Inomata & Tanaka, 1974) 
because the impurities play an important role in the 
phenomenon of polytypism and the stacking faults. 
Silicon powder ( > 9 9 . 9 9 9 %  pure) was used as starting 
material. The graphite crucible (nominal ash compo- 
nent less than 20 p.p.m.) charged with the silicon 
powder was heated at 2773 K for 2 h by an electric 
resistance furnace in a pure argon atmosphere (the 
impurity of N 2 content was less than 5 p.p.m.). This 
method made the long-period polytypes grow more 
predominantly than the sublimation method, the 
so-called Lely method (Lely, 1955). 

A new polytype of SiC, 66R, was found among other 
long-period ones which grew in the crucible. Its shape 
was hexagonal columnar and its length along the c axis 
was 0.2 mm; it was pale green in transmitted light. 

X-ray precession and Weissenberg photographs 
confirmed that this crystal did not show any evidence 
of stacking faults and that it was of entirely 66R type. A 
sample for intensity-data collection was polished into 
an ellipsoid 0.1 mm in diameter using diamond paste 
and immersed several times in liquid nitrogen to reduce 
the secondary extinction. X-ray diffraction data were 
collected on a Rigaku four-circle diffractometer with 
Cu Ka radiation (2 = 1.5418 tk, monochromatized by 
a graphite monochromator  so arranged that the 
incident and reflected rays at both the monochromator  
and the specimen all lie in a plane). The 20-00 scanning 
mode was employed for the intensity measurements 
where 20 _< 55.0 ° and 66 _< h a _< 66. 270 non-zero 
reflections were collected from six rows equivalent to 
100h 4 and 110h 4 reflections through the corrections of 
Lorentz and polarization effects (Whittaker, 1953), and 
then a set of 46 independent non-zero reflections was 
obtained by averaging these equivalent reflections. 

Structure refinement 

The structure refinement can be carried out by taking 
PAn (n :p 3m; m = l, 2, . . . )  as parameters and taking the 
relation (5) into account. However, further simplifi- 
cation is possible in the present case. From (2) and (5), 
the contributions of the A, B, and C sublattices 
(consisting of the A, B, C sites) to the reflections 
allowed by the extinction rule due to the Bravais lattice, 
that is, to the reflections h~h2h3h 4 fulfilling - h i  + h2 + 
h 4 = 0 (mod 3), are the same. Therefore we need 
calculate only the contribution from the A sublattice to 
S(h~,h2,h3,h4). As shown by Tokonami (1966), the 
following relation must be fulfilled in SiC: 

M 

x,~ iS(1,O,O,h4)l 2 = IS(1,1,1,O)I 2 = M 2. (7) 
Experimental h~: 

The high-purity SiC crystals were synthesized by the Furthermore, S(h~,h2,ha,h4) are periodic in reciprocal 
reaction between the high-purity graphite crucible and space. Their periods are unity for hl,h2,h a and M for h 4. 
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From these facts and the relations derived from the 
symmetry of the space group, only S(1,0,0,h4) (h 4 = 
1, 2, ..., M) are independent. Therefore, S(1,0,0,h 4) 
(h 4 = 1, 2 , . . . ,  M) are scaled to fulfill the relation 

M 

Y IS(1, O,O, h4)I2=M 2, (8) 
//4 = 1 

and only these reflections are used in the analysis. 
Fixing the scale factor at unity, the refinement was 

initiated from the starting point where all parameters 

Table 1. The final parameters, and the parameters for 
the [23233333] 3 stacking in the 66R SiC polytype 

Parameters for 
Finalparameters [23233333]3stacking 

P~ 0.3333 0.3333 
P~ 0.0056 + i0.0046 0.0063 + i0.0055 
P~ -0 .0071  - i 0 . 0 3 1 3  - 0 . 0 0 4 0  - i 0 . 0 2 7 9  
P~ - 0 . 0 1 4 6  + i0.0076 -0 .0131  + i0.0038 
P~ -0 .0471  - i 0 . 0 2 6 6  -0 .0432  - i 0 . 0 1 9 7  
P~ - 0 . 0 0 6 2  + i0.0504 -0 .0126  + i0.0431 
P~ - 0 . 0 6 9 7  + i0.0364 -0 .0563  + i0.0361 
P~0 0.1095 + i0.1355 0.1159 + i0.1338 
P~I 0.0040 - i 0 . 1 1 4 2  - i 0 . 1 0 4 9  
P~3 - 0 . 0 5 7 4  + i0.0008 - 0 . 0 5 0 0  + i0.0071 
P~4 0"1037 + i0.0625 0"0936 + i0"0601 
P~6 0.0017 - i0.0054 0'0024 - i0.0053 
P~7 0.1399 - i 0 . 0 5 8 8  0.1326 - i0.0605 
P f f 9  -0 .0185  - i 0 . 0 1 8 6  -0 .0126  - i 0 . 0 1 9 7  
P~0 0.0269 - i0.2370 0.0344 - i0.2395 
P~2 0.2758 + i0.0034 0.3030 
P~3 0.1345 + i0.0922 0.1186 + i0.1028 
P~5 -0 .0242  + ~ .0224  -0 .0149  + i0.0233 
P~6 -0 .0756  + i0.0157 - 0 . 0 6 5 7  + i0.0192 
P~8 -0 .0002  + i0-0090 0.0034 + ~ .0075  
P~9 -0"0399 + i0"1418 -0"0380  + i0.1295 
P~  -0"1005 + i0.0070 -0"0859 - i0.0123 
P~2 0.2341 + i0.2741 0.2528 + ~ .2918  
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(a) (b) 
Fig. 1. Occupation probabilities of 66R SiC. (a) The starting 

point with P~ = 0.05 + i0.05, except for Pg = -~. (b) The 
final result. This shows the stacking sequence 
A C B C A B A C A B C B A C A B C B A C A B  . . . .  This structure is 
represented by the Zhdanov symbol 123233333] 3. 

Table 2. Observed and calculated IS(1,0,0,h4) l 
(× 10/3) of 66R SiC 

(a) Observed values. (b) Calculated values for the final result. 
(c) Calculated values for the 12323333313 stacking. (d) Observed 
values after the absorption and secondary-extinction corrections. 

h4 (a) (b) (c) (d) 

- 3 2  119 119 127 124 
- 2 9  51 49 45 48 
- 2 6  27 26 23 25 
- 2 3  57 54 52 54 
- 2 0  79 79 80 78 
- 1 7  53 50 48 50 
- 1 4  42 40 37 40 
-11  40 38 35 37 

- 8  26 26 22 25 
- 5  19 18 16 18 
- 2  11 11 9 10 

1 3 2 3 2 
4 6 6 5 5 
7 18 17 15 16 

10 59 57 59 58 
13 20 19 17 18 
16 1 2 2 I 
19 9 7 8 8 
22 91 91 100 96 
25 12 11 9 11 
28 3 3 3 3 
31 35 33 29 33 

were equal to 0.05 + i0.05 except for P~ = ~ and P ~ m  = 

0 (m = 1, 2 . . . .  ). The weighted R factor and the penalty 
function smoothly converged from 0.70 and 0.15 to 
0.032 and 0.036 after 26 cycles. The conventional R 
factors for S(1,0,0 ,h  4) of the initial and final states 
were 0.68 and 0.031. The occupation probabilities of 
these two states are illustrated in Fig. 1. From the final 
result, the structure of 66R SiC can be easily 
recognized as the structure with the Zhdanov symbol 
[23233333] 3 . The final parameters are shown in Table 
1 together with the parameters of the [23233333] 3 
structure. This stacking gives an R factor of 0.078. 
Observed and calculated S(hl,h2,h3,h 4) are listed in 
Table 2. 

Secondary extinction 

One of the remarkable experimental results obtained 
from the sample used in the analysis is that the first 
term of (7) is much larger than the second term (see 
Table 3). This may suggest that the secondary 
extinction is very large because the observed intensity 
of 1110 is stronger than that of any 1 0 0 h  4 reflections 
and strong reflections are affected by secondary 
extinction. Furthermore, as shown in Table 2, observed 
values of S(1,0,0 ,h  4) for strong reflections are 
systematically less than those of ]23233333 ]3 stacking. 
Therefore, the absorption and secondary-extinction 
corrections were made by using a program written ]by 
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Table 3. The check of  ~ t  iSo(1,0,0h4)[2 _ h4= 1 

ISo(1,1,1,0)12 for  the two cases before and after the 
absorption and secondary-extinction corrections 

The observed S value is scaled so that the left-hand side of this 
equation is equal to M 2. 

Left-hand Right-hand 
side side 

Before corrections 4356 1566 
After corrections 4356 4261 

one of  us (AY)] on the basis of  new transfer  equations 
(Kato,  1976). After  the correction, we have R = 0 .053 
for the stacking mentioned above and (7) is approxi- 
mately fulfilled (see Table 3). The result after the 
correction is also listed in Table 2. The systematic error  
is improved in this case. This result shows that  the 
secondary-extinct ion effect is large under the present 
experimental conditions and the mosaic structure of 
SiC is hardly affected on immersion in liquid nitrogen. 
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0 1 I 
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(a) 

> 

, , - - , - , , - ,1 

o 1 
pA 

0 1 0 1 
pB pC 

(b) 
Fig. 2. Occupation probabilities of 66R SiC obtained from a 

different starting point. (a) The starting point which has p;4 = 
0-05 - i0.05 for n = 3m + 1 and p;t = -0-05 + i0.05 for n = 
3m + 2 and P~ = ~. (b) The final result. From (b), the stacking 
sequence BCBACABCBACABCBABCACBC... is obtained. 
This is represented by the Zhdanov symbol 133332323]~, which 
is equivalent to the symbol 123233333 ]3 obtained from Fig. 1. 

Conclusion 

Convergence test 

As mentioned before, the least-squares p rogram 
smoothly converged from the starting point with P~ = 
0 . 0 5 + i 0 . 0 5 f o r n g : 3 m ( m =  1,2  . . . .  ) a n d P ~ = ~ a n d  
a reasonable stacking sequence of  66R SiC was 
obtained. To confirm that  this smooth convergence is 
independent of  the starting point and that  the final 
result is a unique solution of  the present problem, a 
similar calculation was made  from a different starting 
point with pA = 0.05 - i0 .05 for n = 3m + 1, pA = 
--0"05 + i0"05 for n = 3m + 2 and P~ = ~. After  31 
cycles, the R factor  reduced to 0 .029,  which is 
comparable  with 0.031 in the previous calculation. The 
initial and final occupat ion probabilities are shown in 
Fig. 2. This final result is equivalent to the previous 
one: if the origin is shifted by x 4 = 9/66,  Fig. 2(b) is 
superposed on Fig. l(b). Thus we obtained the same 
stacking sequence from different initial states. 

The present study determined the stacking sequence of  
the 66R SiC polytype by applying the method of  
modulated structure analysis described in (I). The 
stacking is represented by the Zhdanov  symbol  
[23233333] 3 . F r o m  the convergence check in the 
present analysis and the analyses of 2 1 H  SiC and 66R 
ZnS in (1), we conclude that  the method developed in (I) 
can be used for any other polytypes of  SiC or ZnS. 
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